Submit Manuscript  

Article Details

Effect of the Intramolecular Hydrogen Bond on the Active Metabolite Analogs of Leflunomide for Blocking the Plasmodium falciparum Dihydroorotate Dehydrogenase Enzyme: QTAIM, NBO, and Docking Study


Reihaneh Heidarian and Mansoureh Zahedi-Tabrizi*   Pages 1 - 12 ( 12 )


Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) has been analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study has been performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature has been studied by natural bond orbital analysis (NBO). 1H NMR calculations show an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-F-ATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme.


Leflunomide, Teriflunomide, PfDHODH, DFT, NBO, Hydrogen bond.


Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran

Read Full-Text article